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1. 

An original way of accurately calculating bending moments and shear forces for an
Euler–Bernoulli beam having discontinuities has been outlined recently [1]. The approach
uses generalized force mode functions obtained from a simple uniform beam having the
same end conditions as the beam with discontinuities. Such functions may be constructed
by finding the static deflection of the uniform beam arising from either a concentrated
moment or force acting at the location of a discontinuity. However, a boundary value
problem has to be disadvantageously solved. An alternative procedure used here avoids
this difficulty by constructing the functions directly from polynomials. The procedure
involves two steps. First, polynomials are found on each side of a discontinuity that satisfy
the conditions at the contiguous end. Second, the polynomials must be chosen so that the
transverse deflection and its slope (or the slope due to bending for a Timoshenko beam
[2]) are continuous at the location of a discontinuity.

The objective of the present note is to employ polynomial based generalized force mode
functions, with the method of Galerkin [3] rather than Rayleigh–Ritz, to solve an
illustrative problem that, for the first time, is not self-adjoint. The problem involves the
free vibrations of the simply supported but stepped spinning Timoshenko beam shown in
Figure 1. The analogous uniform beam, however, uses the Euler–Bernoulli simplification
and assumes no spinning.

2.   

Consider a Timoshenko beam having length L and a circular cross-section which is
discontinuous at x=L/2. Suppose that the beam spins at a constant angular speed, V,
about the x-axis which coincides with the beam’s geometric centre in the fixed (inertial)
co-ordinate frame of Figure 1. The beam has mass density, r, Young’s modulus, E, shear
modulus, G, and shear coefficient k. Let A(x), I(x) and Jx be the area, moment and polar
moment of inertia of a cross-section that is distance x from the left end. The transverse
deflections in the y and z directions are designated uy (x) and uz (x), respectively, whilst cy

and cz represent the analogous slope due to bending. The free vibrations of the spinning
beam are governed by [2]

−(kAG(cy +duy /dx))'+ z2rAuy =0, −(kAG(cz +duz /dx))'+ z2rAuz =0, (1, 2)

−(EI dcy /dx)'+ kAG(cy +duy /dx)+ z2rIcy + zVrJxcz =0 (3)

and

−(EI dcz /dx)'+ kAG(cz +duz /dx)+ z2rIcz − zVrJxcy =0, (4)

where a prime superscript indicates differentiation with respect to x whilst z=vi,
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i= (−1)1/2 and v is a natural frequency. The simply supported ends are denoted by

uy (0)= uy (L)= uz (0)= uz (L) (5)

and

c'y (0)=c'y (L)=c'z (0)=c'z (L)=0. (6)

On the other hand, the force compatibility conditions for the discontinuity at x=L/20 x0

are

dcy (x−
0 )

dx
=

EI(x+
0 )

EI(x−
0 )

dcy (x+
0 )

dx
,

dcz (x−
0 )

dx
=

EI(x+
0 )

EI(x−
0 )

dcz (x+
0 )
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, (7)

0cy (x−
0 )+

duy (x−
0 )

dx 1=
kGA(x+

0 )
kGA(x−

0 ) 0cy (x+
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duy (x+
0 )

dx 1 (8)

and

0cz (x−
0 )+

duz (x−
0 )
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kGA(x+

0 )
kGA(x−

0 ) 0cz (x+
0 )+
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0 )

dx 1. (9)

Assume that approximate solutions have the form

un
y = s

n

j=1

dn
1jf1j (x), un

z = s
n

j=1

dn
2jf1j (x) (10)

and

cn
y = s

n
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dn
3jf2j (x), cn

z = s
n

j=1

dn
4jf2j (x). (11)

The fij (x) (i=1, 2 and j=1, 2, . . . , n) are admissible functions whilst the dn
lj (l=1, 2, 3, 4)

are undetermined coefficients. Substituting these forms into the left sides of equations
(1)–(4) leads to the residual errors

on
1 =−0kAG0cn
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2 =−0kAG0cn
z +

dun
z

dx11'+ z2rAun
z ,

(12, 13)
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3 =−0EI
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y

dx 1'+ kAG0cn
y +
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y

dx1+ z2rIcn
y + zVrJxc

n
z (14)
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z

dx 1'+ kAG0cn
z +
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y . (15)

Coefficients dn
lj are determined from the requirements that [3]
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Figure 1. The inertial co-ordinates, xyz.

that lead, in matrix notation, to

(z2[M]+ z[C]+ [K]){dn}= {0}, (17)

where

{dn}=(dn
11 · · · dn

1n , . . . , dn
41 · · · dn

4n )T. (18)

The [M] and [K] are the symmetric mass and stiffness matrix, respectively, whilst [C] is the
skew-symmetric, gyroscopic matrix. Equation (17) represents a system that is not
self-adjoint. It can be rewritten as

$ 0
−[M]−1[K]

[I]
−[M]−1[C]%6 {dn}

z{dn}7= z6 {dn}
z{dn}7 (19)

in order to employ a standard eigenvalue solver. A specific beam that has the material and
dimensional properties given in Table 1 is considered next.

3.  

The first and second order deflection derivatives as well as the slope due to bending of
the example beam are discontinuous at its stepped midpoint, x=0·5 m. Consequently, the
corresponding derivatives of the generalized force mode functions must also be
discontinuous at this location. They should also satisfy the contiguous end conditions.
When used, the generalized force mode functions are designated arbitrarily in equations
(10) and (11) by f11(x) and f12(x) for the deflection, and by f21(x) and f22(x) for the slope
due to bending. Their piecewise polynomial forms, obtained by following the procedure
outlined in the introduction, are summarized in Table 2 for the situation when L=1 m.

T 1

Properties of the spinning beam

L (m) r1 (m) r2 (m) r (kg/m3) k E (GPa) G (GPa) V (rad/s)

1 0·01 0·012 7833·5 0·9 200 83 200
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T 2

Generalized force mode functions in the inertial co-ordinate frame

Generalized force mode functions Generalized force mode functions
for the deflection for the slope due to bending

f11 = x, f12 = x(4x2 −1) 0·0E xE 0·5 f21 =4x2 −1, f22 =12x2 −1 0·0E xE 0·5
f11 =1− x, f21 =−4x2 +8x−3,
f12 =4x3 −12x2 +11x−3 0·5E xE 1·0 f22 =12x2 −24x+11 0·5E xE 1·0

T 3
Values of v for a stepped, simply supported, spinning beam

Mode number Present method No force mode functions Exact results

1 264·53 −264·41 266·04 −265·92 264·53 −264·41
2 1104·84 −1104·37 1105·23 −1104·76 1104·70 −1104·23
3 2415·35 −2414·27 2428·57 −2427·49 2415·32 −2414·25
4 4364·84 −4362·74 4367·21 −4365·38 4361·92 −4360·10

− indicates a backward precession frequency.

They possess the properties

f'12(x)=f22(x), f'21(x)=8f11(x), x$ 0·5 m, (20)

and

f'22(x)=6 24f11(x),
−24f11(x),

xE 0·5 m,
xe 0·5 m,

(21)

that make the calculation of [K] in equation (19) easier [5]. The remaining admissible
functions are taken to be the eigenfunctions of a uniform, non-spinning Euler–Bernoulli
beam having simply supported ends for the deflection and sliding–sliding ends for the slope
due to the bending, i.e., f1j (x)= sin (j−2)px/L and f2j =cos (j−3)px/L for

Figure 2. Exact and numerical values of c'y . ——, Exact with GFMF† with n=10 and n=35; q—, n=10,
no GFMF; ×—, n=35, no GFMF. † Generalized force mode functions.
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Figure 3. Exact and numerical values of u'y +cy . ——, Exact; —e—, n=10, GFMF; +, n=35, GFMF;
—q—, n=10, no GFMF; —×—, n=35, no GFMF.

j=3, . . . , n. It can be shown [6] that all the f1j (x) and f2j (x), je 1, satisfy the end
conditions (5) and (6), respectively. The resulting numerical data for the first four forward
and backward precession frequencies, computed with n=10 in equations (10) and (11),
are presented in Table 3 alongside the exact values. Data calculated without the generalized
force mode functions are also given. Then f1j (x)= sin jpx/L and f2j =cos (j−1)px/L are
employed in equations (10) and (11) for j=1, . . . , n where n=10 again. It can be seen
that the generalized force mode functions certainly improve the accuracy of the natural
frequencies.

To ascertain if Gibbs phenomenon [1] occurs in the bending moment and shear
force due to the stepped cross-section, the c'y (x) and u'y (x)+cy (x) for the first forward
precession frequency are compared with their exact values in Figures 2 and 3,
respectively. Corresponding results that were computed without the generalized
force mode functions, as before, are also presented. For convenience, uy (x) is invariably
taken as 1 m at the beam’s midpoint. Figure 2 demonstrates that the exact results and
those obtained with the inclusion of the generalized force mode functions overlap,
despite the discontinuous nature of the derivatives. However, the data obtained without
these functions oscillate around the beam’s midpoint. A similar oscillation can also be
found in Figure 3. Furthermore, this last figure suggests that the numerical data
obtained with the generalized force mode functions converge to the exact results with
an increasing n.
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4. 

Generalized force mode functions enable the free vibrations of a non-self-adjoint
Timoshenko beam problem to be found without the Gibbs phenomenon occurring.
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